ECS 98F - Using the GNU Debugger

Joél Porquet & Noah Rose Ledesma

COMPUTER SCIENCE

Copyright © 2020-2021 Grant Gilson, Stephen Ott, Joél Porquet-Lupine, Aakash Prabhu, Noah Rose Ledesma
CC BY-NC-SA 4.0 International License 1/22

https://creativecommons.org/licenses/by-nc-sa/4.0/

GDB

GNU project
e Started by Richard Stallman in 1983

* Free software, mass collaboration project in response to proprietary UNIX
o Copyleft license: GNU GPL

o User programs: text editor (Emacs), compiler (GCC toolchain), debugger (GDB), and
various utilities (Is, grep, awk, make, etc.)

o Kernel: GNU Hurd

GDB

¢ GNU DeBugger
Supports many languages
o Including C and C++

Inspection of program during execution
o Execution flow
o Data
Helps finding errors like segmentation fault
Read the fully-detailed manual: https://sourceware.org/gdb/current/onlinedocs/gdb/

2/22

https://sourceware.org/gdb/current/onlinedocs/gdb/

GDB usage

Compilation flags
e Canonical compilation command line:
$ gcc [cflags] -o <output> <input>
e Optimize for speed (-02)
$ gcc -Wall -Werror -02 -o myprogram main.c
e Enable debugging support (-Qg)

$ gcc -Wall -Werror -g myprogram main.c

o To balance performance with debugging experience use -0g

o Not recommended to use debugging along with other optimizations
= No optimization option is equivalent to -00

e During development, very useful to be able to debug your program

e For production, probably better to disable the debug support and activate all possible
optimization support

o Reduce size of the executable (can easily be by 50%!)
o Increase performance (can also be by 50%!)

3/22

GDB usage

Starting GDB

e Start GDB, specify the program to debug
$ gdb
&édb) file myprogram
Reading symbols from myprogram...done.
(gdb)
e Or, start GDB with the program to debug as argument
$ gdb myprogram

Reading symbols from myprogram...done.
(gdb)

Running the program
* Without any argument:
(gdb) run

e With arguments:

(gdb) run argvl argv2...

4/22

GDB usage

Interactive help

e GDB offers an interactive shell
o History management
o Auto-complete (with TAB)

In order to discover what you can do, just ask:

(gdb) help

List of classes of commands:

aliases -- Aliases of other commands

breakpoints -- Making program stop at certain points

(gdb) help breakpoints

Making program stop at certain points.

List of commands:

awatch -- Set a watchpoint for an expression
break -- Set breakpoint at specified location

(gdb) help break
Set breakpoint at specified location.
break [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]

5/22

GDB usage

Possible scenarios

1. Program doesn't have bugs:
o It will run fine until completion

$./myprogram
I worked, hurray!

2. Best-case scenario, regarding bugs:
o Segmentation fault

$./myprogram
segmentation fault (core dumped) ./myprogram

3. Worst-case scenario:
o Doesn't crash but wrong result

$./myprogram
I work@ &, ©@rray!

o Bugs that don't trigger any segmentation fault

o In this case, you'll probably have to spend more time...

6/22

Segmentation faults
Example #1

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

size_t foo_len (const char *s)

{
return strlen(s);
}
int main (int argc, char *argv[])
{
char *a = NULL;
printf ("size of a = %d\n", foo_len(a));
return 0;
}
Execution

$./strlen-test
segmentation fault (core dumped) ./strlen-test

7122

Segmentation faults
Run with GDB

o (After compiling the code with -g)

$ gdb ./strlen-test
(gdb) run
Starting program: /home/noah/tmp/test/strlen-test

Program received signal SIGSEGV, Segmentation fault.
Ox00007ffff7abc446 in strlen () from /usr/lib/libc.so.6

(gdb)

Backtrace
e First thing to do when getting a segfault:
o Understand what is the sequence of calls that brought us there

(gdb) backtrace # use just 'bt'

#0 0Ox00007ffff7abcd446 in strlen () from /usx/lib/libc.so.6

#1 0x000000000040055e in foo_len (s=0x0@) at strlen-test.c:7

#2 0x0000000000400583 in main (argc=1, argv=0x7fffffffd788) at strlen-test.c:14

Investigate
e foo_len() is supposed to receive a pointer
e Here it receives 0@ (aka NULL)

e Looks like this NULL pointer probably gets dereferenced in stxrlen()...

8/22

Segmentation faults

Fix...
* Here, the problem is fairly obvious

size_t foo_len (const char *s)

{

return strlen(s);

}

int main (int argc, char *argv[])
{

char *a = "This is a valid string";

printf ("size of a = %d\n", foo_len(a));

return 0;

}
And, celebrate!

$./strlen-test
size of a = 22

9722

Segmentation faults

Better fix
* Prevent the same bug from happening again

size_t foo_len (const char *s)

{
assert(s && "String cannot be NULL here!");
return strlen(s);

}

int main (int argc, char *argv[])

{
char *a = NULL;
printf ("size of a = %d\n", foo_len(a));
return 0;

}

$./strlen-test
strlen-test: strlen-test.c:8: foo_len:
Assertion 's && "String cannot be NULL here!"' failed.

10/ 22

Segmentation faults
Example #2

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

static const char STR[] = "Hello World!";

int main(int argc, char** argv) {
char* reversed = malloc(stxrlen(STR));
unsigned int reversed_index = strlen(STR) - 1;
unsigned int str_index = 0;

while(reversed_index >= 0) {
reversed[reversed_index] =
reversed_index--;
str_index++;

}

STR[str_index];

printf("%s\n", reversed);
free(reversed) ;

return 0;

}
Execution

strrev_segfault.c

$./strrev-test
segmentation fault (core dumped) ./strrev-test

11722

Segmentation faults
Run GDB

$ gdb ./strrev-test
(gdb) run
Starting program: /home/noah/tmp/test/strrev-test

Program received signal SIGSEGV, Segmentation fault.
@x@0P055555555517¢c in main (argc=1, argv=0x7fffffffe588) at strrev_segfault.c:16

16 reversed[reversed_index] = STR[str_index];
Backtrace
(gdb) bt

#0 ©Ox@00055555555517c in main (argc=1, argv=0x7fffffffe588) at strrev_segfault.c:16

* Except that here, it's not much of help...

Inspect variables
* Display indices so that we know which index in the array was being accessed:

(gdb) print reversed_index
$1 = 4294967295

(gdb) print str_index

$2 = 12

12722

Segmentation faults

Fix...
e Problem is a case of overflow
o Anunsigned int type automatically wraps from 0 to 4294967295

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

static const char STR[] = "Hello World!";

int main(int argc, char** argv) {
char* reversed = malloc(stxrlen(STR));
int reversed_index = strlen(STR) - 1;
unsigned int str_index = 0;

while(reversed_index >= 0) {
reversed[reversed_index] = STR[str_index];
reversed_index--;
str_index++;

}

printf("%s\n", reversed);
free(reversed) ;

return 0;

strrev_fixed.c

13722

Tracking bugs

Behavior bugs

e Behavioral bugs more complicated to find because program doesn't crash

e It's just that the output is wrong

#include <ctype.h>
#include <stdio.h>
#include <string.h>

int main(void)

{
int i;
char str[] = "Tracking bugs is my passion";
printf("Before: %s\n", str);
for (i = 0; i < strlen(str) - 1; i++)

str[i] = toupper(str[i]);

printf("After: %s\n", str);
return 0;

}

Execution

Before: Tracking bugs is my passion
After: TRACKING BUGS IS MY PASSIOn

14/ 22

Tracking bugs
Setting breakpoints

e Stop the program during the execution at a designated point

e Set as many breakpoints as necessary
e GDB will always stop the execution when reaching them

Breaking at exact location in code

(gdb) break string-test.c:13
Breakpoint 1 at 0x4005ef: file string-test.c, line 13.

(gdb) r
Starting program: /home/noah/tmp/test/string-test
Before: Tracking bugs is my passion

Breakpoint 1, main () at string-test.c:13
13 str[i] = toupper(str[i]),;

15722

Tracking bugs
Breaking at a particular function

(gdb) b main
Breakpoint 1 at 0x40059f: file string-test.c, line 8.

(gdb) r
Starting program: /home/noah/tmp/test/string-test

Breakpoint 1, main () at string-test.c:8

8 char str[] = "Tracking bugs is my passion";

Breaking only if condition is satisfied

(gdb) b string-test.c:13 if i ==
Breakpoint 1 at 0x4005ef: file string-test.c, line 13.

(gdb) T
Starting program: /home/noah/tmp/test/string-test
Before: Tracking bugs is my passion

Breakpoint 1, main () at string-test.c:13
13 str[i] = toupper(str[i]);

(gdb) print i
$1 =5

16 /22

Tracking bugs
Dealing with breakpoints

e Set at least one breakpoint before running the program
o Otherwise the program will run until completion
e Once the program stops and the gdb shell is available, a few options:
1. Continue the execution until hitting the same or another breakpoint

(gdb) continue # or just 'c'
2. Execute only the next line of code and break again
(gdb) step # or just 's'

Careful, step enters function calls
3. Jump over function calls

(gdb) next # or just 'n'

Tip: typing <enter> in the interactive GDB shell repeats the last command

171722

Tracking bugs
Printing variables

int a = 2;

char b 'X';

int *c &a;

char *s = "A string";

// <= breaking here

e Inspect the value of all your variables with command print

Default Tweak
e By default, prints variables according to e Can tweak both the way print prints
their type and what it prints
(gdb) print a (gdb) print /x a
$1 = 2 $1 = Ox2
(gdb) p b (gdb) p /c b+2
$2 = 120 'x' $2 = 122 'z'
(gdb) p c (gdb) p *c
$3 = (int *) ox7fffffffd65c $3 = 2
(gdb) p s (gdb) p s[0]
$4 = 0x40070b "A string" $4 = 65 'A’

18722

Tracking bugs
Printing data structures

struct entry {

int key;
char *name;
} obj = {
.key = 2,
.name = "toto",

},

struct entry *e = &obj;

e With print, you can access the pointer and the object it's pointing to:

(gdb) print e

$1 = (struct entry *) Ox7fffffffd640
(gdb) print &obj

$2 = (struct entry *) Ox7fffffffd640
(gdb) p *e

$3 = {key = 2, name = 0x400734 "toto"}

(gdb) p e->key

$4 = 2

(gdb) p obj.name

$5 = 0x400734 "toto"

19722

Misc
Setting watchpoint

e Breakpoints are for interrupting the execution flow at a specific location
e Watchpoints are for interrupting the program when a variable is modified

(gdb) watch i
Hardware watchpoint 2: i

(gdb) c
Continuing.
Before: Tracking bugs is my passion

Hardware watchpoint 2: 1

0ld value = 0
New value =1
0x0000000000400612 in main () at string-test.c:12
12 for (i = 0; i < strlen(str) - 1; i++)

20/ 22

Misc
Other useful commands
e finish
o Runs until the current function is finished

e until
o When executed in a loop, continues the execution until the loop ends

e info breakpoints
o Shows informations about all declared breakpoints

(gdb) info b

Num Type Disp Enb Address What

1 breakpoint keep y 0x000000000040059f in main at string-test.c:8
breakpoint already hit 1 time

2 hw watchpoint keep y i

breakpoint already hit 2 times

e delete
o Deletes a breakpoint

21/ 22

Misc
Conclusion

e GDBis a versatile tool for "looking under the hood"
* Not a magical tool for fixing bugs in program
e Debuggers serve a specific purpose and should only be used in the right circumstances

* Doesn't work for programs with realtime behavior
* Debugging support disables optimizations and adds overhead
e Not ideal for programs that run for a very long time

22 /22

