
ECS 98F - Using the GNU Debugger
Joël Porquet & Noah Rose Ledesma

Copyright © 2020-2021 Grant Gilson, Stephen Ott, Joël Porquet-Lupine, Aakash Prabhu, Noah Rose Ledesma
CC BY-NC-SA 4.0 International License 1 / 22

https://creativecommons.org/licenses/by-nc-sa/4.0/

GDB
GNU project

Started by Richard Stallman in 1983
Free software, mass collaboration project in response to proprietary UNIX

Copyleft license: GNU GPL
User programs: text editor (Emacs), compiler (GCC toolchain), debugger (GDB), and
various utilities (ls, grep, awk, make, etc.)
Kernel: GNU Hurd

GDB
GNU DeBugger
Supports many languages

Including C and C++
Inspection of program during execution

Execution flow
Data

Helps finding errors like segmentation fault
Read the fully-detailed manual: https://sourceware.org/gdb/current/onlinedocs/gdb/

2 / 22

https://sourceware.org/gdb/current/onlinedocs/gdb/

GDB usage
Compilation flags

Canonical compilation command line:

$ gcc [cflags] -o <output> <input>

Optimize for speed (-O2)

$ gcc -Wall -Werror -O2 -o myprogram main.c

Enable debugging support (-g)

$ gcc -Wall -Werror -g myprogram main.c

To balance performance with debugging experience use -Og
Not recommended to use debugging along with other optimizations

No optimization option is equivalent to -O0

During development, very useful to be able to debug your program
For production, probably better to disable the debug support and activate all possible
optimization support

Reduce size of the executable (can easily be by 50%!)
Increase performance (can also be by 50%!)

3 / 22

GDB usage
Starting GDB

Start GDB, specify the program to debug

$ gdb
...
(gdb) file myprogram
Reading symbols from myprogram...done.
(gdb)

Or, start GDB with the program to debug as argument

$ gdb myprogram
...
Reading symbols from myprogram...done.
(gdb)

Running the program
Without any argument:
(gdb) run

With arguments:
(gdb) run argv1 argv2...

4 / 22

GDB usage
Interactive help

GDB offers an interactive shell
History management
Auto-complete (with TAB)

In order to discover what you can do, just ask:

(gdb) help
List of classes of commands:
aliases -- Aliases of other commands
breakpoints -- Making program stop at certain points
...

(gdb) help breakpoints
Making program stop at certain points.
List of commands:
awatch -- Set a watchpoint for an expression
break -- Set breakpoint at specified location
...

(gdb) help break
Set breakpoint at specified location.
break [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]
...

5 / 22

GDB usage
Possible scenarios

1. Program doesn't have bugs:
It will run fine until completion

$./myprogram
I worked, hurray!

2. Best-case scenario, regarding bugs:
Segmentation fault

$./myprogram
segmentation fault (core dumped) ./myprogram

3. Worst-case scenario:
Doesn't crash but wrong result

$./myprogram
I work��, ��rray!

Bugs that don't trigger any segmentation fault
In this case, you'll probably have to spend more time...

6 / 22

Segmentation faults
Example #1
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

size_t foo_len (const char *s)
{
 return strlen(s);
}

int main (int argc, char *argv[])
{
 char *a = NULL;

 printf ("size of a = %d\n", foo_len(a));

 return 0;
}

Execution

$./strlen-test
segmentation fault (core dumped) ./strlen-test

7 / 22

Segmentation faults
Run with GDB

(After compiling the code with -g)

$ gdb ./strlen-test
(gdb) run
Starting program: /home/noah/tmp/test/strlen-test

Program received signal SIGSEGV, Segmentation fault.
0x00007ffff7abc446 in strlen () from /usr/lib/libc.so.6
(gdb)

Backtrace
First thing to do when getting a segfault:

Understand what is the sequence of calls that brought us there

(gdb) backtrace # use just 'bt'
#0 0x00007ffff7abc446 in strlen () from /usr/lib/libc.so.6
#1 0x000000000040055e in foo_len (s=0x0) at strlen-test.c:7
#2 0x0000000000400583 in main (argc=1, argv=0x7fffffffd788) at strlen-test.c:14

Investigate
foo_len() is supposed to receive a pointer
Here it receives 0 (aka NULL)
Looks like this NULL pointer probably gets dereferenced in strlen()...

8 / 22

Segmentation faults
Fix...

Here, the problem is fairly obvious

size_t foo_len (const char *s)
{
 return strlen(s);
}

int main (int argc, char *argv[])
{
 char *a = "This is a valid string";

 printf ("size of a = %d\n", foo_len(a));

 return 0;
}

And, celebrate!

$./strlen-test
size of a = 22

9 / 22

Segmentation faults
Better fix

Prevent the same bug from happening again

size_t foo_len (const char *s)
{
 assert(s && "String cannot be NULL here!");
 return strlen(s);
}

int main (int argc, char *argv[])
{
 char *a = NULL;

 printf ("size of a = %d\n", foo_len(a));

 return 0;
}

$./strlen-test
strlen-test: strlen-test.c:8: foo_len:
 Assertion `s && "String cannot be NULL here!"' failed.

10 / 22

Segmentation faults
Example #2
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

static const char STR[] = "Hello World!";

int main(int argc, char** argv) {
 char* reversed = malloc(strlen(STR));
 unsigned int reversed_index = strlen(STR) - 1;
 unsigned int str_index = 0;

 while(reversed_index >= 0) {
 reversed[reversed_index] = STR[str_index];
 reversed_index--;
 str_index++;
 }

 printf("%s\n", reversed);
 free(reversed);

 return 0;
}

strrev_segfault.c

Execution

$./strrev-test
segmentation fault (core dumped) ./strrev-test

11 / 22

Segmentation faults
Run GDB
$ gdb ./strrev-test
(gdb) run
Starting program: /home/noah/tmp/test/strrev-test

Program received signal SIGSEGV, Segmentation fault.
0x000055555555517c in main (argc=1, argv=0x7fffffffe588) at strrev_segfault.c:16
16 reversed[reversed_index] = STR[str_index];

Backtrace
(gdb) bt
#0 0x000055555555517c in main (argc=1, argv=0x7fffffffe588) at strrev_segfault.c:16

Except that here, it's not much of help...

Inspect variables
Display indices so that we know which index in the array was being accessed:
(gdb) print reversed_index
$1 = 4294967295
(gdb) print str_index
$2 = 12

12 / 22

Segmentation faults
Fix...

Problem is a case of overflow
An unsigned int type automatically wraps from 0 to 4294967295

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

static const char STR[] = "Hello World!";

int main(int argc, char** argv) {
 char* reversed = malloc(strlen(STR));
 int reversed_index = strlen(STR) - 1;
 unsigned int str_index = 0;

 while(reversed_index >= 0) {
 reversed[reversed_index] = STR[str_index];
 reversed_index--;
 str_index++;
 }

 printf("%s\n", reversed);
 free(reversed);

 return 0;
}

strrev_fixed.c

13 / 22

Tracking bugs
Behavior bugs

Behavioral bugs more complicated to find because program doesn't crash
It's just that the output is wrong

#include <ctype.h>
#include <stdio.h>
#include <string.h>

int main(void)
{
 int i;
 char str[] = "Tracking bugs is my passion";

 printf("Before: %s\n", str);

 for (i = 0; i < strlen(str) - 1; i++)
 str[i] = toupper(str[i]);

 printf("After: %s\n", str);

 return 0;
}

Execution
Before: Tracking bugs is my passion
After: TRACKING BUGS IS MY PASSIOn

14 / 22

Tracking bugs
Setting breakpoints

Stop the program during the execution at a designated point
Set as many breakpoints as necessary
GDB will always stop the execution when reaching them

Breaking at exact location in code

(gdb) break string-test.c:13
Breakpoint 1 at 0x4005ef: file string-test.c, line 13.

(gdb) r
Starting program: /home/noah/tmp/test/string-test
Before: Tracking bugs is my passion

Breakpoint 1, main () at string-test.c:13
13 str[i] = toupper(str[i]);

15 / 22

Tracking bugs
Breaking at a particular function
(gdb) b main
Breakpoint 1 at 0x40059f: file string-test.c, line 8.

(gdb) r
Starting program: /home/noah/tmp/test/string-test

Breakpoint 1, main () at string-test.c:8
8 char str[] = "Tracking bugs is my passion";

Breaking only if condition is satisfied
(gdb) b string-test.c:13 if i == 5
Breakpoint 1 at 0x4005ef: file string-test.c, line 13.

(gdb) r
Starting program: /home/noah/tmp/test/string-test
Before: Tracking bugs is my passion

Breakpoint 1, main () at string-test.c:13
13 str[i] = toupper(str[i]);

(gdb) print i
$1 = 5

16 / 22

Tracking bugs
Dealing with breakpoints

Set at least one breakpoint before running the program
Otherwise the program will run until completion

Once the program stops and the gdb shell is available, a few options:
1. Continue the execution until hitting the same or another breakpoint

(gdb) continue # or just 'c'

2. Execute only the next line of code and break again

(gdb) step # or just 's'

Careful, step enters function calls
3. Jump over function calls

(gdb) next # or just 'n'

Tip: typing <enter> in the interactive GDB shell repeats the last command

17 / 22

Default
By default, prints variables according to
their type

(gdb) print a
$1 = 2
(gdb) p b
$2 = 120 'x'
(gdb) p c
$3 = (int *) 0x7fffffffd65c
(gdb) p s
$4 = 0x40070b "A string"

Tweak
Can tweak both the way print prints
and what it prints

(gdb) print /x a
$1 = 0x2
(gdb) p /c b+2
$2 = 122 'z'
(gdb) p *c
$3 = 2
(gdb) p s[0]
$4 = 65 'A'

Tracking bugs
Printing variables
int a = 2;
char b = 'x';
int *c = &a;
char *s = "A string";
 // <= breaking here
...

Inspect the value of all your variables with command print

18 / 22

Tracking bugs
Printing data structures
struct entry {
 int key;
 char *name;
} obj = {
 .key = 2,
 .name = "toto",
};

struct entry *e = &obj;

With print, you can access the pointer and the object it's pointing to:

(gdb) print e
$1 = (struct entry *) 0x7fffffffd640
(gdb) print &obj
$2 = (struct entry *) 0x7fffffffd640
(gdb) p *e
$3 = {key = 2, name = 0x400734 "toto"}
(gdb) p e->key
$4 = 2
(gdb) p obj.name
$5 = 0x400734 "toto"

19 / 22

Misc
Setting watchpoint

Breakpoints are for interrupting the execution flow at a specific location
Watchpoints are for interrupting the program when a variable is modified

(gdb) watch i
Hardware watchpoint 2: i

(gdb) c
Continuing.
Before: Tracking bugs is my passion

Hardware watchpoint 2: i

Old value = 0
New value = 1
0x0000000000400612 in main () at string-test.c:12
12 for (i = 0; i < strlen(str) - 1; i++)

20 / 22

Misc
Other useful commands

finish
Runs until the current function is finished

until
When executed in a loop, continues the execution until the loop ends

info breakpoints
Shows informations about all declared breakpoints

(gdb) info b
Num Type Disp Enb Address What
1 breakpoint keep y 0x000000000040059f in main at string-test.c:8
breakpoint already hit 1 time
2 hw watchpoint keep y i
breakpoint already hit 2 times

delete
Deletes a breakpoint

21 / 22

Misc
Conclusion

GDB is a versatile tool for "looking under the hood"
Not a magical tool for fixing bugs in program
Debuggers serve a specific purpose and should only be used in the right circumstances

Doesn't work for programs with realtime behavior
Debugging support disables optimizations and adds overhead
Not ideal for programs that run for a very long time

22 / 22

