
ECS 98F - Debugging Methodologies
Noah Rose Ledesma

Copyright © 2020-2021 Grant Gilson, Stephen Ott, Joël Porquet-Lupine, Aakash Prabhu, Noah Rose Ledesma
CC BY-NC-SA 4.0 International License 1 / 16

https://creativecommons.org/licenses/by-nc-sa/4.0/

Debugging
Context

Programmers spend a lot of time debugging
Almost 50% of time is spent debugging!

Procedures for debugging are rarely taught
This lecture presents strategies for problem solving & debugging.

Goals
Standardize the process of debugging
Generate problem solving framework

Obstacles
No established method for teaching debugging & problem solving
Experience cannot be taught
Many pitfalls and difficulties to be aware of

Source: University of Cambridge, Judge Business School 2 / 16

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.370.9611&rep=rep1&type=pdf

Difficulties & Pitfalls
Struggling to understand intended versus actual behavior

Explaining the difference between them without getting too technical
Try explaining these two out loud to a friend, family member, or pet rock

Reluctance to split up a task into conceptual chunks
Makes code lengthy, hard to understand, and hard to debug!
Instead: recursively break up problems into a set of smaller problems

Failure to contextualize problems before trying to solve them
Don't jump straight into writing code
Lack of planning leads to great frustration

Rigidly committing to false hypotheses
Be critical with the assumptions you make about your program
Allow yourself to be proven wrong

3 / 16

MINS
Scenario

ATM software for deposits and withdrawals.
Automated tests have exposed some errors, how do we fix them?

Four step debugging process
M: Make a mental model
I: Identify inconsistencies
N: Narrow the problem scope
S: Solve!

Metacognition
I.e. becoming "aware of one's own awareness"
Practice shown to improve cognitive abilities
Goal: be aware of your debugging thought process
General strategies to invoke metacognition

Such as self-questioning, thinking aloud, and graphic representations
More later

4 / 16

MINS
(M)ental Models

Understand the system that has the bug
What is the intended behavior of the system?

Strategies
Explain in "plain English" what the program should do
Plan by breaking down into well-defined chunk
Create a flow chart or diagram of the program logic

User inserts bank card What action was requested?

Wait for user to insert cash

Ask user for amount Is the users balance sufficient?

Add value to user's account

Subtract value from user's account

Return user's bank card

Return cash in fewest # of bills

Deposit

Withdrawal

Yes

No

5 / 16

Flowcharts
Purpose

Great mechanism for planning a program or function
Forces thinking within logical constraints
Avoid technical explanations

Don't mention variables, control flow statements (if, for, while, etc...)

Building blocks
Process: Represents an action
Decision: Represents a question with a finite number of possible answers.

Decisions are usually phrased as yes or no questions.
Terminal: Represents the beginning or end the chart

Process Decision Terminal

6 / 16

Flowcharts
Creation

Start with a clear understanding of what the program should accomplish
This can usually be described in terms of inputs and output

Example
A bank member requests to withdraw money in the fewest number of bills possible. How
many of which bills they are to receive? You have bills in the following denominations: 1, 10,
50, and 100.

Input: Total amount of withdrawal.
Output: The fewest number of bills that sum to the total amount.

7 / 16

Flowcharts
Solution

Is the amount greater than or equal to 100 dollars?

No

Is the amount greater than or equal to 50 dollars?

Is the amount greater than or equal to 10 dollars?

Is the amount greater than or equal to 1 dollar?

The member requests to withdraw an amount of cash

No

No

No

The amount has been paid in full. Stop

Give the member 100 dollars and reduce the amount

Give the member 50 dollars and reduce the amount

Give the member 10 dollars and reduce the amount

Give the member 1 dollar and reduce the amount

Yes

Yes

Yes

Yes

8 / 16

MINS
(I)dentify Inconsistencies

What is the actual behavior of the program?
How does this differ from the intended behavior?

Strategies
Describe the differences between the actual and intended behaviors.
What other inputs trigger the bug?

Example
$./broken_change 120
The change is:
1 x $100
0 x $50
1 x $10
10 x $1

"The program gave the user ten one dollar bills instead of one ten dollar bill."

9 / 16

MINS
Try more inputs
$./broken_change 110
The change is:
1 x $100
0 x $50
0 x $10
10 x $1

$./broken_change 30
The change is:
0 x $100
0 x $50
2 x $10
10 x $1

$./broken_change 10
The change is:
0 x $100
0 x $50
0 x $10
10 x $1

Ten one dollar bills are always given in place of one of the ten dollar bills.

10 / 16

MINS
(N)arrow down the problem scope

Interpret inconsistencies to hypothesize the bug's location
Pose answerable questions that allow you narrow the scope of possible questions.
Repeat this process until the location of the bug has been pinpointed.

Example hypotheses
The first time a ten dollar bill was to be given, 10 one dollar bills were given.
The last time a ten dollar bill was to be given, 10 one dollar bills were given.
10 one dollar bills were given at neither the first or last time a ten dollar bill was to be
given.

11 / 16

Change Program
void MakeChange(int value) {
 unsigned int ones = 0, tens = 0, fifties = 0, hundreds = 0;
 while(value > 0) {
 if(value >= 100) {
 hundreds++;
 value -= 100;
 } else if(value >= 50) {
 fifties++;
 value -= 50;
 } else if(value > 10) {
 tens++;
 value -= 10;
 } else if(value >= 1) {
 ones++;
 value -= 1;
 }
 }
 printf("The change is:\n");
 printf("%i x $100\n", hundreds);
 printf("%i x $50\n", fifties);
 printf("%i x $10\n", tens);
 printf("%i x $1\n", ones);
}

broken_change.c

12 / 16

With Logging
void MakeChange(int value) {
 unsigned int ones = 0, tens = 0, fifties = 0, hundreds = 0;
 while(value > 0) {
 if(value >= 100) {
 hundreds++;
 value -= 100;
 printf("Gave $100, new value: %i\n", value);
 } else if(value >= 50) {
 fifties++;
 value -= 50;
 printf("Gave $50, new value: %i\n", value);
 } else if(value > 10) {
 tens++;
 value -= 10;
 printf("Gave $10, new value: %i\n", value);
 } else if(value >= 1) {
 ones++;
 value -= 1;
 printf("Gave $1, new value: %i\n", value);
 }
 }
}

broken_change_printing.c

13 / 16

Output
$./broken_change_printing 30
Gave $10, new value: 20
Gave $10, new value: 10
Gave $1, new value: 9
Gave $1, new value: 8
Gave $1, new value: 7
Gave $1, new value: 6
Gave $1, new value: 5
Gave $1, new value: 4
Gave $1, new value: 3
Gave $1, new value: 2
Gave $1, new value: 1
Gave $1, new value: 0

The last time a ten dollar bill was to be given, 10 one dollar bills were given.

14 / 16

MINS
(S)olve

After locating the bug, generate a solution and test it.
Typically, locating a bug is much harder than solving it.

 } else if(value > 10) {
 tens++;
 value -= 10;

broken_change.c

vs

 } else if(value >= 10) {
 tens++;
 value -= 10;

fixed_change.c

15 / 16

Demo
Scenario

Implementation of Caesar cipher
Oldest & simplest form of encryption
Shift every letter in the alphabet by a set amount

16 / 16

