ECS 98F - Debugging Methodologies

Noah Rose Ledesma

COMPUTER SCIENCE

Copyright © 2020-2021 Grant Gilson, Stephen Ott, Joél Porquet-Lupine, Aakash Prabhu, Noah Rose Ledesma
CC BY-NC-SA 4.0 International License 1/16

https://creativecommons.org/licenses/by-nc-sa/4.0/

Debugging

Context

e Programmers spend a lot of time debugging
o Almost 50% of time is spent debugging!
* Procedures for debugging are rarely taught
e This lecture presents strategies for problem solving & debugging.

Goals

e Standardize the process of debugging
e Generate problem solving framework

Obstacles

* No established method for teaching debugging & problem solving
e Experience cannot be taught
e Many pitfalls and difficulties to be aware of

Source: University of Cambridge, Judge Business School

2/16

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.370.9611&rep=rep1&type=pdf

Difficulties & Pitfalls

Struggling to understand intended versus actual behavior

e Explaining the difference between them without getting too technical

* Try explaining these two out loud to a friend, family member, or pet rock
Reluctance to split up a task into conceptual chunks

* Makes code lengthy, hard to understand, and hard to debug!

* Instead: recursively break up problems into a set of smaller problems
Failure to contextualize problems before trying to solve them

e Don't jump straight into writing code

e Lack of planning leads to great frustration
Rigidly committing to false hypotheses

e Be critical with the assumptions you make about your program

e Allow yourself to be proven wrong

3/16

MINS

Scenario

e ATM software for deposits and withdrawals.
* Automated tests have exposed some errors, how do we fix them?

Four step debugging process

e M: Make a mental model

e [: Identify inconsistencies

e N: Narrow the problem scope
e S:Solve!

Metacognition

¢ Le. becoming "aware of one's own awareness"

* Practice shown to improve cognitive abilities

e Goal: be aware of your debugging thought process

* General strategies to invoke metacognition
o Such as self-questioning, thinking aloud, and graphic representations
o More later

4/16

MINS
(M)ental Models

¢ Understand the system that has the bug
* What is the intended behavior of the system?

Strategies
e Explain in "plain English" what the program should do
e Plan by breaking down into well-defined chunk
e Create a flow chart or diagram of the program logic

] Withdrawal
User inserts bank card —PC What action was requested?)—) Ask user for amount

—)(Is the users balance sufficient? >—

Deposit

Wait for user to insert cash

Add value to user's account

Yes

Subtract value from user's account

Return cash in f

ewest # of bills

/Return user's bank card <

No

5/16

Flowcharts
Purpose

e Great mechanism for planning a program or function
e Forces thinking within logical constraints
* Avoid technical explanations
o Don't mention variables, control flow statements (if, for, while, etc...)

Building blocks

* Process: Represents an action

* Decision: Represents a question with a finite number of possible answers.
o Decisions are usually phrased as yes or no questions.

e Terminal: Represents the beginning or end the chart

Process (Decision) / Terminal

6/16

Flowcharts

Creation
e Start with a clear understanding of what the program should accomplish
o This can usually be described in terms of inputs and output

Example

A bank member requests to withdraw money in the fewest number of bills possible. How
many of which bills they are to receive? You have bills in the following denominations: 1, 10,

50, and 100.

e Input: Total amount of withdrawal.
e Qutput: The fewest number of bills that sum to the total amount.

7/16

Flowcharts
Solution

The member requests to withdraw an amount of cash

Gthe amount greater than or equal to 100 doIIars?)ﬂb Give the member 100 dollars and reduce the amount
No l

(sthe amount greater than or equal to 50 dollars? ves Give the member 50 dollars and reduce the amount
No l

(sthe amount greater than or equal to 10 dollars? ves Give the member 10 dollars and reduce the amount
No ¢

(Is the amount greater than or equal to 1 dollar? ves Give the member 1 dollar and reduce the amount

!

The amount has been paid in full. Stop

8/16

MINS

(I)dentify Inconsistencies

* What is the actual behavior of the program?
* How does this differ from the intended behavior?

Strategies

e Describe the differences between the actual and intended behaviors.
e What other inputs trigger the bug?

Example

$./broken_change 120
The change is:

1 x $100

0 x $50

1 x $10

10 x $1

"The program gave the user ten one dollar bills instead of one ten dollar bill."

9/16

MINS
Try more inputs

$./broken_change 110
The change is:

1 x $100

0 x $50

0 x $10

10 x $1

$./broken_change 30
The change 1is:

0 x $100

0 x $50

2 x $10

10 x $1

$./broken_change 10
The change 1is:

0 x $100

0 x $50

0 x $10

10 x $1

Ten one dollar bills are always given in place of one of the ten dollar bills.

10/ 16

MINS

(N)arrow down the problem scope

e Interpret inconsistencies to hypothesize the bug's location
* Pose answerable questions that allow you narrow the scope of possible questions.
* Repeat this process until the location of the bug has been pinpointed.

Example hypotheses

e The first time a ten dollar bill was to be given, 10 one dollar bills were given.
e The last time a ten dollar bill was to be given, 10 one dollar bills were given.

* 10 one dollar bills were given at neither the first or last time a ten dollar bill was to be
given.

11716

Change Program

void MakeChange(int value) {
unsigned int ones = @, tens = @, fifties = @, hundreds
while(value > 0) {
if(value >= 100) {
hundreds++;
value -= 100;
} else if(value >= 50) {
fifties++;
value -= 50;
} else if(value > 10) {
tens++;
value -= 10;
} else if(value >= 1) {
ones++;
value -= 1;

}
}

printf("The change is:\n");

(

printf("%1i
printf("%1i
printf("%1i
printf("%1i

X
X
X
X

$100\n", hundreds);
$50\n", fifties);
$10\n", tens);
$1\n", ones);

0;

broken_change.c

12716

With Logging

void MakeChange(int value) {
unsigned int ones = @, tens = @, fifties = @, hundreds = 0;
while(value > 0) {
if(value >= 100) {
hundreds++;
value -= 100;
printf("Gave $100, new value: %i\n", value);
} else if(value >= 50) {
fifties++;
value -= 50;
printf("Gave $50, new value: %i\n", value);
} else if(value > 10) {
tens++;
value -= 10;
printf("Gave $10, new value: %i\n", value);
} else if(value >= 1) {
ones++;
value -= 1;
printf("Gave $1, new value: %i\n", value);

broken_change_printing.c

13716

Output

$./broken_change_printing 30

Gave
Gave
Gave
Gave
Gave
Gave
Gave
Gave
Gave
Gave
Gave
Gave

The last time a ten dollar bill was to be given, 10 one dollar bills were given.

$10, new value: 20

$10, new value:
value:
value:
value:
value:
value:
value:
value:
value:
value:
value:

$1,
$1,
$1,
$1,
$1,
$1,
$1,
$1,
$1,
$1,

new
new
new
new
new
new
new
new
new
new

S R, N WA ULIO N VO

10

14716

MINS

(S)olve
* After locating the bug, generate a solution and test it.
* Typically, locating a bug is much harder than solving it.

} else if(value > 10) {
tens++;
value -= 10;

VS

} else if(value >= 10) {
tens++;
value -= 10;

broken_change.c

fixed_change.c

15716

Demo
Scenario

e Implementation of Caesar cipher

¢ Oldest & simplest form of encryption
e Shift every letter in the alphabet by a set amount

A

B

C

D

16/16

