
ECS 98F - Version Control (Using git)
Grant Gilson

Copyright © 2020-2021 Grant Gilson, Stephen Ott, Joël Porquet-Lupine, Aakash Prabhu, Noah Rose Ledesma
CC BY-NC-SA 4.0 International License 1 / 17

https://creativecommons.org/licenses/by-nc-sa/4.0/

Git
The stupid content tracker

Tool created by Linus Torvalds in 2005 to replace Bitkeeper
Distributed version control manager

Main goals
Accountability

Who wrote the code
Software branches

Different software versions, ensure bug fixes are shared
Record and policy keeping

History of the project is recorded
Designate protocols to enforce good code guidelines

2 / 17

Setup
Installation
$ sudo apt install git

One-time configration
$ git config --global user.name "<FirstName LastName>"
$ git config --global user.email "<YourEmailHere>"

3 / 17

Setup
Clone from an existing repository

After you or your partner created it on github first (or whichever git platform you
prefer: e.g., gitlab, bitbucket)

$ git clone git@github.com:<nickname>/<project>.git
$ cd <project>

Or create a new repository
$ mkdir <project>
$ cd <project>
$ git init

4 / 17

Problem Scenario
Large group project
You are working on a very large group project with a lot of contributors.

Keep track of who changed what in the codebase
Efficienctly merge and distribute new code to the codebase
The ability to try out new features without breaking the team's code
The ability to turn back time when new code breaks old code

5 / 17

Tracking
A naive approach
Use shared google doc to keep track of:

What lines/functions changed
Who changed them
When they were changed
Why they were changed

Problems
Shared doc gets very large and unreadable
Requires the author to remember every function/line they change
Time spent not moving the project forward

6 / 17

Tracking
The cycle of git

7 / 17

Tracking
Checking file status

$ git status

Returns status of each file in the repo

Tracking and staging

$ git add <filename>
$ git add <dirname>

Adds the file to tracking if it was previously untrack
Adds the file to the staging area

Committing the staging area

$ git commit # opens default editor
$ git commit -m "High level message of what I changed"

Moves all staged files back to unmodified state
History has been written to the repository

8 / 17

Tracking
Viewing history
To view changes at the commit level

$ git log
... commit_hash ...
... commit message ...

In order to see changes for a particular commit

$ git show 78d1470bea3581dd1f77aaede584c1f6a2ce491d
... commit message...
...lines added/removed...

Determine who last modified each line in a file

$ git blame <filename>

9 / 17

Distributing
A naive approach

Email your colleagues copies of your code
You colleague diff their version with yours and manually applies patches

Problems
Leaves the burden of merging in code to your colleages
Which person's copy is the real version of the project?

10 / 17

Distributing
Centralized workflow

Real Version is the shared repo
Everyone syncs to the shared repo
Everyone up-to-date can write to the shared repo
Everyone gets a copy of the shared repo

11 / 17

Distributing
Publishing
$ git push <remote> <branchName>
$ git push origin main # example

Publishes local changes to shared repo

Updating
$ git pull <remote> <branchName>
$ git pull origin main # example

Fetches changes from shared repo
Attempts to merge changes

12 / 17

Distributing
Dealing with conflicts
The merge process is not perfect, conflicts can arise.

$ git pull
...
Auto-merging test1.c
CONFLICT (content): Merge conflict in test1.c
Automatic merge failed; fix conflicts and then commit the result.

$ git status
...
 Unmerged paths:
 (use "git add <file>..." to mark resolution)

 both modified: test1.c
...

13 / 17

Distributing
Dealing with conflicts
Use you editor to resolve the conflict:

Accept remote changes
Continue using your changes
Combination of remote and yours

When conflicts are resolved they need to be committed

$ git add test.c
$ git commit

Then push the results of the merge to the team

$ git push <remoteName> <branchName>

14 / 17

Trying out new features
A naive approach

1. Implement new idea in place
Feature didn't pan out ctrl-z until back to the original state

2. Create copy of file you want to change as file.bak, file_working.bak...
Feature didn't pan out: restore to file.bak

Problems
Editor reloaded, can't ctrl-z anymore
Easy to lose track of working versions of files

15 / 17

Trying out new features
Branching
Creates a isolated pesudo-new:

working area
staging area
project history

Commits in a branch are separate from the base branch until merged in
Freely move between branches

16 / 17

Wrap up

17 / 17

