
ECS 98F - Shell Scripting
Stephen Ott

Copyright © 2020-2021 Grant Gilson, Stephen Ott, Joël Porquet-Lupine, Aakash Prabhu, Noah Rose Ledesma
CC BY-NC-SA 4.0 International License 1 / 26

https://creativecommons.org/licenses/by-nc-sa/4.0/

Agenda
Today's lecture

Why we script and what we can script
Bash syntax and semantics
Writing maintainable scripts

2 / 26

Why we script
Save time
Abstraction
Adoration from our peers

Two types of scripts
The "throwaway" scripts
The "throwaway" scripts that are now
indispensible

Philosophy of Scripting

3 / 26

Problem Scenario
Importing photos
You have just imported some pictures from your phone onto your computer. All of the files
are named something like IMG2002.jpg. The rest of your pictures are named something
like image2002.jpg. How can we rename all of the IMG____.jpg files to image____.jpg?

IMG2000.jpg

image2000.jpg

IMG2001.jpg

image2001.jpg

IMG5030.jpg

image5030.jpg

...

4 / 26

Problem Scenario
What we want

We want to be able to run command from our shell that will perform the rename for
every jpeg named this way
It would be nice if we could solve this, not only for this problem, but for the general
problem of renaming multiple files with similiar names
What information would we need?

$./batch_rename.sh IMG image <all_jpeg_files_in_a_directory>

5 / 26

Problem Scenario
First attempt
$ mv IMG2000.jpg image2000.jpg
$ mv IMG2001.jpg image2001.jpg
$ mv IMG2002.jpg image2002.jpg
...

Pros
This technically works
The command is really easy to remember
Builds muscle memory

Cons
What if there's 1000 files?
What if it's some other file format?

6 / 26

The Bash Language
Thinking of bash as a language

Bash is a programming language like C
You already have written some Bash!
Unlike C, Bash is interpreted and dynamically-typed

7 / 26

$ mv IMG2000.jpg image2000.jpg
$ mv IMG2001.jpg image2001.jpg
$ mv IMG2002.jpg image2002.jpg
...
$ mv IMG2020.jpg image2020.jpg

mv IMG2000.jpg image2000.jpg
mv IMG2001.jpg image2001.jpg
mv IMG2002.jpg image2002.jpg
...
mv IMG2020.jpg image2020.jpg

attempt1.sh

The Bash Language
Our first script

Copy and paste what we were typing in the terminal into a file

Then run

$ bash attempt1.sh

8 / 26

The Bash Language
Variables
Assigning variables

Bash is dynamically typed
Spaces matter!

This works
var="foo"

This errors
var = "foo"

This stores stdout from ls
files=$(ls)

Accessing variables

echo $var

This works as well
echo "$var"

9 / 26

The Bash Language
String interpolation

Bash strings can use either single or double-quoted strings
Single-quoted will perform no interpolation

var='cool'

Prints Stephen is pretty cool
echo "Stephen is pretty $var"
This works as well and is sometimes more readable
echo "Stephen is pretty ${var}"
Prints Stephen is not $var
echo 'Stephen is not so $var'

String substitution
Bash allows you to easily substitute strings

message="Stephen is not cool"
correct_message={message/'cool'/'uncool'}
Prints Stephen is not uncool
echo $correct_message

10 / 26

The Bash Language
Wildcard

* is a meta-character that represents zero or more of any characters
Also called glob star

$ ls
main.c helper.h helper.c run.log run2.log run3.log
$ rm *.log
$ ls
main.c helper.h helper.c

11 / 26

pies=('apple' 'cherry' 'pecan')
echo ${pies[1]}
pies+=('blueberry')
echo ${pies[3]}

array_example.sh

$ bash array_example.sh
cherry
blueberry

pies=('apple' 'cherry' 'pecan')
echo ${pies[*]}
unset pies[2]
echo ${pies[*]}
echo ${#pies[@]}

array_example2.sh

$ bash array_example2.sh
apple cherry pecan
apple cherry
2

The Bash Language
Arrays

Same idea as arrays in C
Index from zero
Use += to append elements

Index * to get all elements in the array
Use unset to remove elements of an array at an index
Prefix the name of the array with # and index @ to get the length of the array

12 / 26

The Bash Language
For loops

Bash's for loops are iterator based

pies=('apple' 'cherry' 'pecan' 'blueberry')

Prints all the pies in the array
for i in ${pies[@]}
do
 echo $i
done

for_loop_test.sh

$ bash for_loop_test.sh
apple
cherry
pecan
blueberry

13 / 26

The Bash Language
A second attempt
for i in IMG*.jpg
do
 new_file_name=${i/IMG/image}
 echo "Renaming $i to $new_file_name"
 mv $i $new_file_name
done

attempt2.sh

$ bash attempt2.sh
Renaming IMG1.jpg to image1.jpg
Renaming IMG2.jpg to image2.jpg
Renaming IMG3.jpg to image3.jpg

Pros
Works with 2, 50, or 1000 files
Frees up time for you to get more coffee and do homework

Cons
Someone else wouldn't be able to use it
Only works for this scenario

14 / 26

Making It Scalable
Comments

Single line comments in Bash start with #

Using comments keeps your code readable

She-bang lines
This is a single line that appears on the first line of the file to provide a path to the
interpreter

#!/bin/bash

for i in IMG*.jpg
do
 new_file_name=${i/IMG/image}
 echo "Renaming $i to $new_file_name"
 mv $i $new_file_name
done

attempt2.sh

15 / 26

#!/bin/bash

echo $3
echo $2
echo $1

arg_test.sh

$ chmod +x arg_test.sh
$./arg_test.sh Stephen Grant Noah
Noah
Grant
Stephen

#!/bin/bash

echo $@
shift 2
echo $@

arg_test2.sh

$ chmod +x arg_test2.sh
$./arg_test2.sh a b c d e f
a b c d e f
c d e f

Making It Scalable
Command line arguments

In bash, arguments are also indexed by position
$0 is the name of the script
$1, $2, ... refer to the positional arguments in their respective order

Variable number of arguments
Scripts can have a variable number of arguments
These arguments are stored in the special variable $@

shift is a reserved keyword to shift which section of the sequence of arguments we
are looking at

16 / 26

Making It Scalable
Conditionals
If-statements

Enclose statement in double square brackets
if [[2 != 3]]
then
 echo "2 is not 3"

else
 echo "If 2 is 3, then pi is a rational number"
fi

Case statements
Nice way to replace if...else if...else if...else blocks

case $some_string in
 ni)
 echo "We are the knight who say ni"
 ;;
 it)
 echo "AHHHHH! Don't say that word!"
 ;;
 *)
 echo "ni"
esac

17 / 26

Checking exit codes
Recall that a program has failed if it has
a nonzero exit code
The exit code of the last command is
stored in the variable $?
This also works with the && and ||
operators to allow you to succinctly
express this logic

Providing exit codes
Use the exit command followed by an
integer
Numbering these in a meaningful way
makes it easy to identify problems in
your code
Defaults to 0

#!/bin/bash

grep 'Gandalf' list_of_dwarves.txt

if [[$? != 0]]
then
 echo "Gandalf is not a dwarf"
 exit 1
else
 echo "Gandalf is a dwarf"
 exit 0
fi

dwarf_search.sh

$ chmod +x dwarf_search.sh
$./dwarf_search.sh
Gandalf was not in the list of dwarves
$ echo $?
1

Making It Scalable
Exit codes

18 / 26

#!/bin/bash

lines_in_file()
{
 # Here $1 is the name of a file
 wc -l $1
}
lines_in_file list_of_dwarves.txt

function_example.sh

$ chmod +x function_example.sh
$./function_example.sh
13

Making It Scalable
Functions
Differences from C

It is then helpful to think of functions as mini-scripts
This includes passing and accessing arguments to the function

Example

19 / 26

#!/bin/bash

mode=$1
find=$2
replace=$3
Shift 3, so $@ will refer to the target files
shift 3
files=$@

print_help()
{
...
}

do_rename()
{
...
}

batch_rename.sh

case $mode in
 '-h')
 print_help
 ;;
 '-d')
 echo 'Performing dry run'
 do_rename true
 ;;
 '-f')
 echo 'Performing rename in place'
 do_rename false
 ;;
 *)
 echo 'Invalid arguments. Try again'
 print_help
 exit 1
esac

batch_rename.sh

A Third Attempt
The script

Let's look at a solution with our new knowledge of Bash

20 / 26

A Third Attempt
The print_help function
print_help()
{
 # Prints a help message to the user
 echo "Usage: ./batch_rename.sh [-h|-d|-f] FIND REPLACE FILES"
 echo ""
 echo "FIND: The substring that constitutes a file name we want to change"
 echo "REPLACE: What we will replace the FIND string with"
 echo "FILES: The target files to be renamed"
 echo " -h: Help. Prints this help message and exits"
 echo " -d: Dry run. Prints what the changes would be but does not execute the changes"
 echo " -f: Force. Changes the file names in place."
}

batch_rename.sh

21 / 26

A Third Attempt
The do_rename function
do_rename()
{
 dry_run=$1
 # For each file
 for i in $files
 do
 # If $find is a substring of $i
 if [[$i == *"${find}"*]]
 then
 # perform the substitution
 new_name=${i/$find/$replace}

 # if the user indicated they don't want to do a dry run
 if [[$dry_run = false]]
 then
 # perform the rename
 mv $i $new_name && echo "Successfully renamed $i to $new_name"
 else
 # else just print what the result would be
 echo "Would rename $i to $new_name"
 fi
 fi

batch_rename.sh

22 / 26

A Third Attempt
Let's run it!
$ ls
IMG1.jpg IMG2.jpg IMG3.jpg
$./batch_rename.sh -f IMG image *.jpg
Performing rename in place
Successfully renamed test_files/IMG1.jpg to test_files/image1.jpg
Successfully renamed test_files/IMG2.jpg to test_files/image2.jpg
Successfully renamed test_files/IMG3.jpg to test_files/image3.jpg
$ ls
image1.jpg image2.jpg image3.jpg

This fixes all the cons of the previous iteration
Will work with any file naming scheme
Can be run from other directory locations
Friendly for other users

23 / 26

Shellcheck
Utility to lint your bash scripts
Catches syntactic errors and code that may be a problem under certain cases

$ shellcheck batch_rename.sh

In batch_rename.sh line 8:
files=$@
 ^-- SC2124: Assigning an array to a string! Assign as array, or use * instead of @ to co
ncatenate.

In batch_rename.sh line 40:
 mv $i $new_name
 ^-- SC2086: Double quote to prevent globbing and word splitting.
 ^-------^ SC2086: Double quote to prevent globbing and word splitting.

Did you mean:
 mv "$i" "$new_name"

For more information:
 https://www.shellcheck.net/wiki/SC2124 -- Assigning an array to a string! A...
 https://www.shellcheck.net/wiki/SC2086 -- Double quote to prevent globbing ...

24 / 26

Conclusion
Bash is a programming language
Shell scripting is a powerful tool to automate repetitive tasks
However, it is not a development language1

Shell scripting should not be used when1

Performance matters
The task has non-straightforward logic
Your script has to perform massive amounts of data manipulation

Other languages can be used for scripting

1: Source: Google's Style Guide

25 / 26

https://google.github.io/styleguide/shellguide.html

References & Further Reading
Shell Scripting Tutorial

This serves as a good refresher on bigger concepts and constructs of the language
Google Shell Script Style Guide

While the style guide informs style, it also gives a great philosophy of what you should
script

What is Bash?
GNU's introduction to what Bash is. Gives a good overview of language semantics

Bash cheat sheet
Concise reminder on features of the language. Sometimes helpful to have open in
another window while writing a script.

26 / 26

https://www.shellscript.sh/
https://google.github.io/styleguide/shellguide.html
https://www.gnu.org/savannah-checkouts/gnu/bash/manual/bash.html#What-is-Bash_003f
https://devhints.io/bash

