ECS 98F - Shell Scripting

Stephen Ott

UCDAVIS

COMPUTER SCIENCE

Copyright © 2020-2021 Grant Gilson, Stephen Ott, Joél Porquet-Lupine, Aakash Prabhu, Noah Rose Ledesma
CC BY-NC-SA 4.0 International License 1/ 26

https://creativecommons.org/licenses/by-nc-sa/4.0/

Agenda

Today's lecture

e Why we script and what we can script
e Bash syntax and semantics
e Writing maintainable scripts

2/ 26

Philosophy of Scripting
Why we script
* Save time

* Abstraction
e Adoration from our peers

Two types of scripts

e The "throwaway" scripts

e The "throwaway" scripts that are now
indispensible

HOW LONG CAN YoU WORK ON MAKING A ROUTINE TASK MORE
EFFICIENT BEFORE YOURE SPENDING MORE TME THAN YOU SAVE?

(PCROSS FIVE YERARS)

1 SECOND
5 SECONDS

30 SE0NDS
10 e
TG 5 MNTES
SHAVE 35 s
1 HooR

6 HOURS

11| D

————HOW OFTEN YOU DO THE TRSK

- 1
Ofer by DALY WEEKY MONFLY YEARY

[T onv | 20008 | e | anires oTE secoRos

om0 | 25| 2| i
O

4 WeEKs || 3] DAYS | 12 HOURS | 2 HOURS ﬂr'?’.uu;as DTS

Bieeso (6100 [T op | 4 voums | 1wk | D

7 vonrs| T U (6] 0| 21 Houks | 5 Hows

3/26

Problem Scenario
Importing photos

You have just imported some pictures from your phone onto your computer. All of the files
are named something like IMG2002 . jpg. The rest of your pictures are named something

like image2002. jpg. How can we rename all of the IMG .jpg files to image .jpg?
[[[
IMG2000.jpg IMG2001.jpg IMG5030.jpg
H H N
image2000.jpg image2001.jpg image5030.jpg

4/ 26

Problem Scenario
What we want

e We want to be able to run command from our shell that will perform the rename for
every jpeg named this way

e It would be nice if we could solve this, not only for this problem, but for the general
problem of renaming multiple files with similiar names

e What information would we need?

$./batch_rename.sh IMG image <all_jpeg_files_in_a_directory>

5/26

Problem Scenario
First attempt

$ mv IMG2000.jpg image2000. jpg
$ mv IMG2001.jpg image2001.jpg
$ mv IMG2002.jpg image2002.jpg

Pros
e This technically works
e The command is really easy to remember
e Builds muscle memory

Cons
e What if there's 1000 files?
e What if it's some other file format?

6/26

The Bash Language

Thinking of bash as a language
e Bashis a programming language like C
* You already have written some Bash!
e Unlike C, Bash is interpreted and dynamically-typed

7126

The Bash Language

Our first script

e Copy and paste what we were typing in the terminal into a file

$ mv IMG2000.jpg
$ mv IMG2001.jpg
$ mv IMG2002.jpg

<

$ mv IMG2020.jpg

Then run

image2000. jpg
image2001.jpg
image2002.jpg

image2020.jpg

$ bash attemptl.sh

mv
mv
mv

mv

IMG2000 . jpg
IMG2001. jpg
IMG2002. jpg

IMG2020. jpg

image2000. jpg
image2001.jpg
image2002.jpg

image2020. jpg

attempt1.sh

8/ 26

The Bash Language

Variables

Assigning variables
e Bash is dynamically typed
* Spaces matter!

This works
var="foo"

This errors
var = "foo"

This stores stdout from 1s
files=%$(1s)
Accessing variables

echo $var

This works as well
echo "$var"

9726

The Bash Language

String interpolation

e Bash strings can use either single or double-quoted strings
¢ Single-quoted will perform no interpolation

var='cool'

Prints Stephen is pretty cool

echo "Stephen is pretty $var"

This works as well and is sometimes more readable
echo "Stephen is pretty ${var}"

Prints Stephen is not $var

echo 'Stephen is not so $var'

String substitution
e Bash allows you to easily substitute strings

message="Stephen is not cool"
correct_message={message/'cool'/"'uncool'}

Prints Stephen is not uncool
echo $correct_message

10/ 26

The Bash Language
Wildcard

* *jsameta-character that represents zero or more of any characters
e Also called glob star

$ 1s

main.c helper.h helper.c run.log run2.log zrun3.log
$ rm *.log

$ 1s

main.c helper.h helper.c

11726

The Bash Language
Arrays

e Same idea as arraysin C
* Index from zero
e Use +=to append elements

pies=("'apple' 'cherry' 'pecan') $ bash array_example.sh
echo ${pies[1]} cherry
pies+=("'blueberry"') blueberry

echo ${pies[3]}

array_example.sh

e Index * to get all elements in the array
e Use unset to remove elements of an array at an index
e Prefix the name of the array with # and index @ to get the length of the array

pies=('apple' 'cherry' 'pecan') $ bash array_example2.sh
echo ${pies[*]} apple cherry pecan

unset pies[2] apple cherry

echo ${pies[*]} 2

echo ${#pies[@]}

array_example2.sh

12726

The Bash Language

For loops

e Bash's for loops are iterator based
pies=('apple' 'cherry' 'pecan' 'blueberry')

Prints all the pies in the array
for i in ${pies[@]}
do

echo $i

done
for_loop_test.sh

$ bash for_loop_test.sh
apple

cherry

pecan

blueberry

13726

The Bash Language

A second attempt

for i in IMG*.jpg

do
new_file_name=${i/IMG/image}
echo "Renaming $i to $new_file_name"
mv $i $new_file_name

done

$ bash attempt2.sh

Renaming IMGl.jpg to imagel. jpg
Renaming IMG2.jpg to image2.jpg
Renaming IMG3.jpg to image3.jpg

Pros
e Works with 2, 50, or 1000 files

e Frees up time for you to get more coffee and do homework

Cons

e Someone else wouldn't be able to use it

e Only works for this scenario

attempt2.sh

14/ 26

Making It Scalable

Comments

¢ Single line comments in Bash start with #

Using comments keeps your code readable

She-bang lines

e This is a single line that appears on the first line of the file to provide a path to the
interpreter

#!/bin/bash

for i in IMG*.jpg

do
new_file_name=${i/IMG/image}
echo "Renaming $i to $new_file_name"
mv $i1i $new_file_name

done
attempt2.sh

15726

Making It Scalable

Command line arguments

e In bash, arguments are also indexed by position
o $0 is the name of the script

o $1, $2, ... referto the positional arguments in their respective order
#!/bin/bash $ chmod +x arg_test.sh
$./arg_test.sh Stephen Grant Noah
echo $3 Noah
echo $2 Grant
echo $1 arg_test.sh Stephen

Variable number of arguments
e Scripts can have a variable number of arguments
* These arguments are stored in the special variable $@

o shiftis areserved keyword to shift which section of the sequence of arguments we
are looking at

#!/bin/bash $ chmod +x arg_test2.sh
$./arg_test2.sh abcdef
echo %@ abcdef
shift 2 cde f
echo %@

arg_test2.sh

16/ 26

Making It Scalable

Conditionals

If-statements
* Enclose statement in double square brackets

if [[2 !'= 3]]
then
echo "2 is not 3"

else
echo "If 2 is 3, then pi is a rational number"
fi

Case statements
* Nicewaytoreplace if...else if...else if

case $some_string in
ni)
echo "We are the knight who say ni"
it)
echo "AHHHHH! Don't say that word!"
*)

echo "ni"
esac

.. .else blocks

17126

Making It Scalable

Exit codes
Checking exit codes Providing exit codes
e Recall that a program has failed if it has ¢ Use the exit command followed by an
a nonzero exit code integer
e The exit code of the last command is e Numbering these in a meaningful way
stored in the variable $? makes it easy to identify problems in
e This also works with the &% and | | your code
operators to allow you to succinctly e Defaultsto 0

express this logic

#!/bin/bash $ chmod +x dwarf_search.sh
$./dwarf_search.sh

grep 'Gandalf' list_of_dwarves.txt Gandalf was not in the list of dwarves
$ echo $?

if [[$? =0 1] 1

then
echo "Gandalf is not a dwarf"
exit 1

else
echo "Gandalf is a dwarf"
exit 0

fi

dwarf_search.sh

18726

Making It Scalable

Functions

Differences from C
o Itis then helpful to think of functions as mini-scripts
o This includes passing and accessing arguments to the function

Example

$ chmod +x function_example.sh
$./function_example.sh

lines_in_file() 13

{

#!/bin/bash

Here $1 is the name of a file
wc -1 $1
}

lines_in_file list_of_dwarves.txt
function_example.sh

19726

A Third Attempt
The script

e Let's look at a solution with our new knowledge of Bash

#!/bin/bash

mode=$1
find=$2
replace=%$3

Shift 3, so $@ will refer to the target files

shift 3
files=%@

print_help()
{

}

do_xrename ()

{

}

batch_rename.sh

case $mode in

|_h|)
print_help

|_d|)
echo 'Performing dry run'
do_rename true

|_f|)
echo 'Performing rename in place'
do_rename false

*) r
echo 'Invalid arguments. Try again'
print_help
exit 1

esac
batch_rename.sh

20/ 26

A Third Attempt
The print_help function

print_help()

{

Prints a help message to the user

echo
echo
echo
echo
echo
echo
echo
echo

"Usage: ./batch_rename.sh [-h|-d|-f] FIND REPLACE FILES"

"FIND: The substring that constitutes a file name we want to change"
"REPLACE: What we will replace the FIND string with"

"FILES: The target files to be renamed"

" -h: Help. Prints this help message and exits"

" -d: Dry run. Prints what the changes would be but does not execute the
" -f: Force. Changes the file names in place."

changes™

batch_rename.sh

21/26

A Third Attempt

The do_rename function

do_rename ()
{
dry_run=$1
For each file
for i in $files
do
If $find is a substring of $i
if [[$1 == *"${find}"*]]
then
perform the substitution
new_name=${i/$find/$replace}

if the user indicated they don't want to do a dry run
if [[$dry_run = false 1]
then
perform the rename
mv $i $new_name && echo "Successfully renamed $i to $new_name"
else
else just print what the result would be
echo "Would rename $i to $new_name"
fi
fi

batch_rename.sh

22/ 26

A Third Attempt
Let's run it!

$ 1s

IMG1.jpg IMG2.jpg IMG3.jpg

$./batch_rename.sh -f IMG image *.jpg

Performing rename in place

Successfully renamed test_files/IMG1l.jpg to test_files/imagel.jpg
Successfully renamed test_files/IMG2.jpg to test_files/image2.jpg
Successfully renamed test_files/IMG3.jpg to test_files/image3.jpg
$ 1s

imagel.jpg 1image2.jpg 1image3.jpg

This fixes all the cons of the previous iteration

* Will work with any file naming scheme
e Can be run from other directory locations
e Friendly for other users

23/ 26

Shellcheck

e Utility to lint your bash scripts
e Catches syntactic errors and code that may be a problem under certain cases

$ shellcheck batch_rename.sh

In batch_rename.sh line 8:
files=%@

A-- SC2124: Assigning an array to a string! Assign as array, or use * instead of @ to co
ncatenate.

In batch_rename.sh line 40:
mv $i $new_name
AN-- SC2086: Double quote to prevent globbing and word splitting.
ALEEEELR A SC2086: Double quote to prevent globbing and word splitting.

Did you mean:
mv "$i" "$new_name"

For more information:
https://www.shellcheck.net/wiki/SC2124 -- Assigning an array to a string! A...
https://www.shellcheck.net/wiki/SC2086 -- Double quote to prevent globbing ...

24/ 26

Conclusion

e Bash is a programming language
Shell scripting is a powerful tool to automate repetitive tasks

However, it is not a development language’

Shell scripting should not be used when'
o Performance matters
o The task has non-straightforward logic
o Your script has to perform massive amounts of data manipulation

Other languages can be used for scripting

1: Source: Google's Style Guide

25/ 26

https://google.github.io/styleguide/shellguide.html

References & Further Reading

e Shell Scripting Tutorial
o This serves as a good refresher on bigger concepts and constructs of the language
e Google Shell Script Style Guide
o While the style guide informs style, it also gives a great philosophy of what you should
script
e What is Bash?
o GNU's introduction to what Bash is. Gives a good overview of language semantics

e Bash cheat sheet

o Concise reminder on features of the language. Sometimes helpful to have open in
another window while writing a script.

26/ 26

https://www.shellscript.sh/
https://google.github.io/styleguide/shellguide.html
https://www.gnu.org/savannah-checkouts/gnu/bash/manual/bash.html#What-is-Bash_003f
https://devhints.io/bash

