
ECS 98F - Software Testing
Noah Rose Ledesma

Copyright © 2020-2021 Grant Gilson, Stephen Ott, Joël Porquet-Lupine,
Aakash Prabhu, Noah Rose Ledesma

CC BY-NC-SA 4.0 International
License 1 / 14

https://creativecommons.org/licenses/by-nc-sa/4.0/

Why testing software?
Because of bugs

Programmers write lots of bugs
Average of 1-25 bugs per 1000 lines of code in small projects

Software testing is required to find these bugs

Project size (in SLOC) Average error density (per 1K SLOC)

Less than 2K 0 - 25

2K - 16K 0 - 40

16K - 64K 0.5 - 50

64K - 512K 2 - 70

512K and more 4 - 100

Source: HowNot2Code

Testing is part of the job
In my most recent internship, 4K lines of code vs 6K lines of tests!
In larger projects, testing helps keep track of old code

2 / 14

https://hownot2code.com/2017/11/08/search-for-bugs-in-code-at-the-early-stage/

Testing strategies
Autograder

Script that Professor or TAs wrote
Test student submissions against a set of test cases
Determine a score/grade for each submission

Pros
Low effort and provides immediate feedback
Directly correlates with the grade you receive

Cons
(Possibly) limited number of submissions
(Generally) no granular feedback
No autograders in the real-world!

3 / 14

Run code and manually verify that it works
Test several input-output scenarios
Bug if output is incorrect Input Program Output

Cons
Insanely time-consuming for larger programs

Thorough testing requires many input-output scenarios
Difficult to thoroughly test programs
Generally provides no granular feedback

Input #2 Program Output #2

Input #1

Input #3

Output #1

Output #3

Testing strategies
Manual testing

Pros
Easy and intuitive way to test programs
Catch blatant errors

4 / 14

Automated Testing
Programs to test programs

Provides input to the program being tested
Analyzes the output of the tested program
Determines if the output was correct for the input.

Checking an input output pair
Pre-define input and expected output

Input Program Real Output Real Output

==?
Expected Output

Input

Expected Output

Pass or Fail

5 / 14

Demo
Username Validator Demo

/*
 * Returns true if a username is valid, false otherwise.
 * A username is valid if and only if the following are true:
 * 1) The username contains no special characters. That is, it may only
 * contain letters and digits.
 * 2) The username does not start with a number.
 * 3) The username contains at least three and no more than ten
 * characters.
 * 4) The username is not one of "admin" or "noah"
 */
bool IsUsernameValid(const char *username) {
 return HasNoSpecialChars(username) && DoesNotStartWithNumber(username)
 && MeetsLengthRequirement(username) && IsNotReserved(username);
}

usernames_example/username_validator.c

6 / 14

Demo Recap
Pre-define usernames and expected validity
Pass usernames into IsValidUsername
Check that IsValidUsername returns the value we expect

 { .username="john42", .should_be_valid=true},
 { .username="SarahsCool", .should_be_valid=true},
 { .username="DeadB33f", .should_be_valid=true},
...
 { .username="Uno!", .should_be_valid=false},
 { .username="y*o", .should_be_valid=false},
 { .username="@#$%^&*", .should_be_valid=false},

usernames_example/username_validator_test.c

Pros
Fast to run, can be done after every change
Verifies the end-to-end behavior of the program

Cons
Still doesn’t address the granularity problem
Writing tester and input-output combos requires time
-- You can’t test every possible
input-output pair!

7 / 14

The granularity problem
What information does a failing test provide?

A faulty program means one or more faulty components
Failing test doen't tell us which component is faulty

HasNoSpecialChars

IsValidUsername

DoesNotStartWithNumber MeetsLengthRequirement IsNotReserved

Unit tests
Different type of automated test

Test the individual components of a program
Independent of the end-to-end behavior

Input Unit Real Output Real Output

==?
Expected Output

Input

Expected Output

Pass or FailU

8 / 14

Testing frameworks
Many frameworks exist to make testing easier in C

GoogleTest, MinUnit, CMocky, CuTest, Cester, AceUnit, etc...
Virtually all languages have testing frameworks

We will use CUnit for its simplicity
Provides an easy syntax for declaring a unit test & encoding expectations
Installation: sudo apt-get install libcunit1 libcunit1-dev

Use assertions to encode expectations

CU_ASSERT(1 == 1);
CU_ASSERT(strcmp("foo", "foo") == 0);
CU_ASSERT(!(2 == 1));
CU_ASSERT(IsValidUsername("john42"));

Each unit test becomes a function

void TestUnitA() {
 ...
 CU_ASSERT(...);
 ...
}

CUnit Homepage 9 / 14

http://cunit.sourceforge.net/

Demo
Username Validator Unit Testing Demo

Instead of testing the program as a whole, test the components individually
Requires writing more tests, but provides very helpful feedback
Using the CUnit framework, set up assertions

void TestHasNoSpecialChars() {
 // Positive exampes
 CU_ASSERT(HasNoSpecialChars("abcdefghijklmnopqrstuvwxyz"));
 CU_ASSERT(HasNoSpecialChars("ABCDEFGHIJKLMNOPQRSTUVWXYZ"));
 CU_ASSERT(HasNoSpecialChars("1234567890"));
 CU_ASSERT(HasNoSpecialChars(""));
 // Negative examples
 CU_ASSERT(!HasNoSpecialChars("!@#$%^&*()"));
 CU_ASSERT(!HasNoSpecialChars("[]\\{}|;':\",./<>?"));
 CU_ASSERT(!HasNoSpecialChars("AbbyR0ad!"));
 CU_ASSERT(!HasNoSpecialChars(" "));
 CU_ASSERT(!HasNoSpecialChars("D@rk S!de ()f Th3 M()()n"));
}

usernames_example/username_validator_unittests.c

10 / 14

Testing: How much is enough
Which functions should be unit tested?

The most frequently used?
The most complex?
The newest or oldest?

There is not one correct answer.

How many input-output pairs should be tested?
Not feasible to test every possible input
Number of pairs is not as important as thoroughly testing code

Evaluating thoroughness
Determine which lines of code are executed by a test

11 / 14

Code Coverage
AKA the number of lines of code executed by a series of tests

Use software to track which lines of a program are tested
Provides a suitable approximation of test “goodness”

How to generate code coverage reports
Use gcov & gcovr

Compile your test code and enable generation of coverage data
--coverage -g -O0

Run your test program
Run the gcovr tool to generate human-readable reports

12 / 14

Demo
Generating code coverage reports with gcov & gcovr

13 / 14

Homework
Write end-to-end tests for calculator

Closed source
Discover bugs

Write unit tests for pig latin translator
Open source
Use CUnit
Have 100% code coverage

14 / 14

