ECS 98F - Software Testing

Noah Rose Ledesma

UCDAVIS

COMPUTER SCIENCE

Copyright © 2020-2021 Grant Gilson, Stephen Ott, Joél Porquet-Lupine, Aakash Prabhu, Noah Rose Ledesma
CC BY-NC-SA 4.0 International License 1714

https://creativecommons.org/licenses/by-nc-sa/4.0/

Why testing software?

Because of bugs

e Programmers write lots of bugs
o Average of 1-25 bugs per 1000 lines of code in small projects
e Software testing is required to find these bugs

Project size (in SLOC) Average error density (per 1K SLOC)

Less than 2K 0-25
2K - 16K 0-40
16K - 64K 0.5-50

64K - 512K 2-70
512K and more 4-100

Source: HowNot2Code

Testing is part of the job

* In my most recent internship, 4K lines of code vs 6K lines of tests!
e Inlarger projects, testing helps keep track of old code

2/14

https://hownot2code.com/2017/11/08/search-for-bugs-in-code-at-the-early-stage/

Testing strategies
Autograder

e Script that Professor or TAs wrote
e Test student submissions against a set of test cases
e Determine a score/grade for each submission

Pros
e Low effort and provides immediate feedback
e Directly correlates with the grade you receive

Ccons
¢ (Possibly) limited number of submissions
¢ (Generally) no granular feedback
* No autograders in the real-world!

3/14

Testing strategies
Manual testing

e Run code and manually verify that it works A A
 Test several input-output scenarios = —j>j— =
e Bug if output is incorrect Input Program Output
Pros
e Easy and intuitive way to test programs
e Catch blatant errors
Cons
¢ Insanely time-consuming for larger programs :: ::
o Thorough testing requires many input-output scenarios Input #1 Output #1
e Difficult to thoroughly test programs
e Generally provides no granular feedback _= a ! E
Input #2 /Progra \ Output #2
Input #3 Output #3

4/14

Automated Testing

Programs to test programs

e Provides input to the program being tested
* Analyzes the output of the tested program
e Determines if the output was correct for the input.

Checking an input output pair

* Pre-define input and expected output

A
— A A A A
— — - ? -
nput —_— —> m —»> = - e == »Pass or Fail
k Input Program Real Output Real Output Expected Output

Expected Output

5/14

Demo
Username Validator Demo

/*

* Returns true if a username is valid, false otherwise.

* A username is valid if and only if the following are true:

* 1) The username contains no special characters. That is, it may only
* contain letters and digits.

* 2) The username does not start with a number.

* 3) The username contains at least three and no more than ten

* characters.

* 4) The username is not one of "admin" or "noah"

*/

bool IsUsernameValid(const char *username) {
return HasNoSpecialChars(username) && DoesNotStartWithNumber(username)
&& MeetslLengthRequirement(username) && IsNotReserved(username);

usernames_example/username_validator.c

6/14

Demo Recap

* Pre-define usernames and expected validity
* Pass usernames into IsValidUsername
* Check that IsValidUsername returns the value we expect

{ .username="john42", .should_be_valid= },

{ .username="SarahsCool", .should_be_valid= },

{ .username="DeadB33f", .should_be_valid= },

{ .username="Uno!", .should _be valid= },

{ .username="y*0", .should_be_valid= },

{ .username="@#%$%"&*", .should_be_valid= }, .

usernames_example/username_validator_test.c

Pros

e Fastto run, can be done after every change
* Verifies the end-to-end behavior of the program

cons
e Still doesn't address the granularity problem

e Writing tester and input-output combos requires time -- You can't test every possible
input-output pair!

7714

The granularity problem
What information does a failing test provide?

e Afaulty program means one or more faulty components
e Failing test doen't tell us which component is faulty

IsValidUsername

HasNoSpecialChars DoesNotStartWithNumber MeetsLengthRequirement

IsNotReserved

Unit tests

Different type of automated test

¢ Test the individual components of a program
e Independent of the end-to-end behavior

i
he)
= 4

A

Unit Real Output Real Output Expected Output

Expected Output

A A
— — — ? —
= —> l |—> = " = == = —»Pass or Falil
Input

8/14

Testing frameworks

* Many frameworks exist to make testing easier in C
o GoogleTest, MinUnit, CMocky, CuTest, Cester, AceUnit, etc...
o Virtually all languages have testing frameworks
e We will use CUnit for its simplicity
o Provides an easy syntax for declaring a unit test & encoding expectations
o Installation: sudo apt-get install libcunitl libcunitl-dev

Use assertions to encode expectations

CU_ASSERT(1 == 1);

CU_ASSERT (stxcmp("foo", "foo") == 0);
CU_ASSERT(!(2 == 1));

CU_ASSERT (IsValidUsername("john42"));

Each unit test becomes a function

void TestUnitA() {

CU_ASSERT(...);

CUnit Homepage 9/14

http://cunit.sourceforge.net/

Demo
Username Validator Unit Testing Demo

e Instead of testing the program as a whole, test the components individually
e Requires writing more tests, but provides very helpful feedback
¢ Using the CUnit framework, set up assertions

void TestHasNoSpecialChars() {
// Positive exampes
CU_ASSERT (HasNoSpecialChars("abcdefghijklmnopgrstuvwxyz"));
CU_ASSERT (HasNoSpecialChars ("ABCDEFGHIJKLMNOPQRSTUVWXYZ")) ;
CU_ASSERT (HasNoSpecialChars("1234567890")) ;
CU_ASSERT (HasNoSpecialChars(""));
// Negative examples
CU_ASSERT (!HasNoSpecialChars (" !@#$%"&*()"));
CU_ASSERT (!HasNoSpecialChars (" [I\\{}]|; " ":\",./<>?2"));
CU_ASSERT ('HasNoSpecialChars ("AbbyR@ad!"));
CU_ASSERT ('HasNoSpecialChars(" ")),
CU_ASSERT (!HasNoSpecialChars("D@rk S'de ()f Th3 M()()n"));

usernames_example/username_validator_unittests.c

10/ 14

Testing: How much is enough
Which functions should be unit tested?

* The most frequently used?
* The most complex?
* The newest or oldest?

There is not one correct answer.

How many input-output pairs should be tested?

* Not feasible to test every possible input
e Number of pairs is not as important as thoroughly testing code

Evaluating thoroughness

e Determine which lines of code are executed by a test

11714

Code Coverage

AKA the number of lines of code executed by a series of tests

e Use software to track which lines of a program are tested
e Provides a suitable approximation of test “goodness”

username validator.c | | 81.2% 13/16
username validator unittests.c I 96.0% 48/50

How to generate code coverage reports

Use gcov & gcovr
e Compile your test code and enable generation of coverage data
o --coverage -g -00
* Run your test program
* Run the gcovr tool to generate human-readable reports

12/14

Demo
Generating code coverage reports with gcov & gcovr

* Internal functions
*
!

13/14

Homework

e Write end-to-end tests for calculator
o Closed source
o Discover bugs

e Write unit tests for pig latin translator
o Open source
o Use CUnit
o Have 100% code coverage

14714

